Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1'-Dibutyl-3,3'-biindolinylidene-2,2'dione

Mao-Sen Yuan, Qi Fang,* Lei Ji and Wen-Tao Yu

State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China Correspondence e-mail: fangqi@sdu.edu.cn

Received 3 September 2007; accepted 11 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.057; wR factor = 0.169; data-to-parameter ratio = 14.8.

The title molecule, $C_{24}H_{26}N_2O_2$, has its central C=C double bond placed on an inversion centre, and both indolin-2-one units are coplanar. The three terminal C atoms of the two butyl groups are disordered over two positions; the site occupancy factors are ca. 0.54 and 0.46. The central C=C bond exhibits an E configuration and is conjugated with the indole heterocycles. This aromatic character is related to the planarity of the isoindigo core and is reminiscent of that observed in stilbene.

Related literature

For the structure of isoindigo, see: von Eller-Pandraud (1960). For the properties of isoindigo derivatives, see: Sassatelli et al. (2004).

Experimental

Crystal data

C24H26N2O2 V = 1005.32 (4) Å³ $M_r = 374.47$ Z = 2Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 9.0301 (2) Å $\mu = 0.08 \text{ mm}^{-1}$ b = 12.0559 (3) Å T = 293 (2) K c = 9.8618 (2) Å $0.32 \times 0.15 \times 0.09 \text{ mm}$ $\beta = 110.546 (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (APEX2; Bruker, 2005) $T_{\min} = 0.82, \ T_{\max} = 0.99$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	4 restraints
$wR(F^2) = 0.170$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
2321 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
157 parameters	

7181 measured reflections

 $R_{\rm int} = 0.035$

2321 independent reflections

1203 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant Nos. 20472044 and 50673054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2134).

References

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
- von Eller-Pandraud, H. (1960). Acta Cryst. 13, 936-938.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sassatelli, M., Saab, E., Anizon, F., Prudhomme, M. & Moreau, P. (2004). Tetrahedron Lett. 45, 4827-4830.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04342 [doi:10.1107/S160053680705009X]

1,1'-Dibutyl-3,3'-biindolinylidene-2,2'-dione

M.-S. Yuan, Q. Fang, L. Ji and W.-T. Yu

Comment

Isoindigo, which contains a bis-indole framework, can be obtained from various natural sources. Its derivatives are usually known as useful medicines (Sassatelli *et al.*, 2004). Isoindigo may also be used as a precursor for the synthesis of organic two-photon absorption (TPA) compounds, because of its perfect planar π -conjugated structure. When exploring new TPA compounds, we obtained an intermediate compound 1,1'-dibutyl-isoindigo (I), for which we now report the synthesis and structure,

The molecule is centrosymmetric with its inversion centre placed at the midpoint of the C2=C2^{*i*} bond [symmetry code (*i*): 1 - x, 1 - y, -z], which thus presents an *E* conformation. The asymmetric unit thus contains one-half molecule. The two indole-2-one moieties are coplanar: the maximum displacement from the least-squares plane defined by 20 atoms of the isoindigo core is 0.036 (2) Å for O1 atom.

Both indole-2-one heterocycles are connected by the central C=C double bond, which has a bond length of 1.369 (4) Å, longer than typical $C(sp^2)=C(sp^2)$ double bonds. On the other hand, The C2—C3 bond length, 1.476 (3) Å, is shorter than typical $C(sp^3)$ — $C(sp^3)$ single bonds. This means that the bonding in the fragment C3—C2=C2^{*i*}—C3^{*i*} is conjugated, as observed in stilbene. Considering the excellent planarity of (I), the π -conjugation of the title molecule should be better than that of stilbene, which is known as a TPA active compound. The geometry, conformation, and bond characters of (I) are very similar to those of isoindigo (von Eller-Pandraud, 1960). In (I), *n*-butyl groups bonded to the isoindigo core are disordered over two positions (Fig. 1).

There are no significant hydrogen bonds in the crystal structure (Fig. 2). However, the weak intramolecular interaction C4—H4···O1^{*i*} helps the isoindigo core of the molecule to keep a perfect planar conformation (Fig. 1). This intramolecular contact is characterized by a separation H4···O1^{*i*} = 2.05 Å and a C4—H4···O1^{*i*} angle of 137°.

Experimental

1-Butyl-1*H*-indole-2,3-dione (1.5 g) and 1-butyl-1*H*-indole-2-one (1.5 g) were mixed with polyphosphoric acid (15 g), reacted at 333–338 K for 30 min. under N₂, and then heated to 433–443 K with stirring. After 3 h, the mixture was poured into ice water and stirred for 1 h. The solution was extracted in chloroform and dried over Na₂SO₄. After removing the solvent, the crude product was purified by column chromatography on silica gel, eluting with petrol ether, affording the title compound (1.4 g, 47.1%). The compound was dissolved in THF and purple plate crystals of (I) formed on slow evaporation, at room temperature, over one week.

Refinement

Atoms C10, C11 and C12 were found to be disordered over two positions. Site occupation factors converged to 0.540 (8) [C10/C11/C12] and 0.460 (8) [C10/C11/C12']. Bond lengths C10—C11, C11—C12, C10'—C11', and C11'—C12' were restrained to 1.54 (1) Å. H atoms were positioned geometrically and allowed to ride on their carrier atom. The C—H bond lengths for aromatic, methyl and methylene groups were set to 0.93, 0.96 and 0.97 Å, respectively.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The molecular packing of crystal (I). All H atoms have been omitted for clarity.

1,1'-Dibutyl-3,3'-biindolinylidene-2,2'-dione

Crystat aata
$\mathrm{C}_{24}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}_{2}$
$M_r = 374.47$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 9.0301 (2) Å

b = 12.0559(3) Å

c = 9.8618 (2) Å

 $\beta = 110.546 \ (2)^{\circ}$

V = 1005.32 (4) Å³

Crystal data

 $F_{000} = 400$ $D_x = 1.237 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 977 reflections $\theta = 2.8-20.6^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K Plate, purple $0.32 \times 0.15 \times 0.09 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer

2321 independent reflections

Z = 2

Radiation source: fine-focus sealed tube	1203 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.8^{\circ}$
φ and ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan (APEX2; Bruker, 2005)	$k = -15 \rightarrow 13$
$T_{\min} = 0.82, \ T_{\max} = 0.99$	$l = -12 \rightarrow 12$
7181 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.170$	$w = 1/[\sigma^2(F_o^2) + (0.0743P)^2 + 0.1566P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2321 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
157 parameters	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

methods

						•
Fractional at	omic coordina	tes and isotroni	c or equivalen	t isotronic disnlad	cement parameters	$(Å^2)$
1 i actionat at	onne cooranna	es and ison opr	e or equivalent	i ison opie aispia	content parameters	(11)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
N1	0.5019 (2)	0.30724 (15)	0.18760 (19)	0.0628 (5)	
C3	0.6752 (2)	0.39265 (16)	0.0975 (2)	0.0512 (5)	
C2	0.5247 (2)	0.45466 (16)	0.04392 (19)	0.0508 (5)	
C8	0.6545 (3)	0.30456 (18)	0.1826 (2)	0.0570 (6)	
01	0.2828 (2)	0.41384 (15)	0.0981 (2)	0.0947 (7)	
C1	0.4184 (3)	0.39394 (19)	0.1093 (2)	0.0599 (6)	
C6	0.9168 (3)	0.2428 (2)	0.2345 (3)	0.0756 (7)	
H6	0.9986	0.1936	0.2799	0.091*	
C7	0.7717 (3)	0.2290 (2)	0.2498 (3)	0.0709 (7)	
H7	0.7537	0.1707	0.3037	0.085*	
C5	0.9414 (3)	0.3278 (2)	0.1536 (3)	0.0728 (7)	
H5	1.0400	0.3355	0.1446	0.087*	
C4	0.8229 (3)	0.40266 (19)	0.0847 (2)	0.0636 (6)	
H4	0.8422	0.4598	0.0298	0.076*	
C9	0.4387 (3)	0.2311 (2)	0.2693 (3)	0.0799 (8)	
H9A	0.3428	0.2628	0.2761	0.096*	0.540 (8)
H9B	0.5148	0.2246	0.3670	0.096*	0.540 (8)
H9C	0.3906	0.2761	0.3243	0.096*	0.460 (8)
H9D	0.5255	0.1906	0.3384	0.096*	0.460 (8)

supplementary materials

C10	0.4018 (9)	0.1163 (7)	0.2045 (8)	0.088 (2)	0.540 (8)
H10A	0.4922	0.0888	0.1833	0.106*	0.540 (8)
H10B	0.3842	0.0669	0.2750	0.106*	0.540 (8)
C11	0.2597 (10)	0.1148 (7)	0.0693 (8)	0.112 (3)	0.540 (8)
H11A	0.2804	0.1587	-0.0046	0.134*	0.540 (8)
H11B	0.1709	0.1478	0.0881	0.134*	0.540 (8)
C12	0.217 (3)	-0.0054 (14)	0.014 (2)	0.183 (8)	0.540 (8)
H12A	0.1180	-0.0055	-0.0654	0.274*	0.540 (8)
H12B	0.2095	-0.0510	0.0906	0.274*	0.540 (8)
H12C	0.2984	-0.0341	-0.0188	0.274*	0.540 (8)
C10'	0.3178 (15)	0.1506 (8)	0.1785 (13)	0.101 (3)	0.460 (8)
H10C	0.2780	0.1067	0.2408	0.121*	0.460 (8)
H10D	0.2296	0.1914	0.1119	0.121*	0.460 (8)
C11'	0.3837 (11)	0.0751 (6)	0.0947 (11)	0.105 (3)	0.460 (8)
H11C	0.4727	0.0344	0.1605	0.125*	0.460 (8)
H11D	0.4211	0.1182	0.0301	0.125*	0.460 (8)
C12'	0.254 (3)	-0.0077 (13)	0.0052 (18)	0.126 (6)	0.460 (8)
H12D	0.2979	-0.0570	-0.0473	0.190*	0.460 (8)
H12E	0.1675	0.0327	-0.0617	0.190*	0.460 (8)
H12F	0.2169	-0.0499	0.0694	0.190*	0.460 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0559 (12)	0.0657 (12)	0.0699 (11)	0.0018 (10)	0.0258 (9)	0.0148 (10)
C3	0.0481 (12)	0.0534 (12)	0.0515 (11)	-0.0018 (10)	0.0168 (9)	-0.0030 (9)
C2	0.0484 (13)	0.0523 (12)	0.0547 (12)	-0.0042 (10)	0.0217 (10)	-0.0047 (9)
C8	0.0519 (14)	0.0619 (14)	0.0559 (12)	-0.0017 (11)	0.0173 (10)	-0.0004 (10)
01	0.0688 (12)	0.0964 (14)	0.1388 (16)	0.0190 (10)	0.0611 (11)	0.0470 (12)
C1	0.0544 (14)	0.0634 (14)	0.0666 (13)	0.0014 (12)	0.0270 (11)	0.0055 (11)
C6	0.0585 (16)	0.0811 (17)	0.0828 (16)	0.0139 (13)	0.0192 (13)	0.0164 (14)
C7	0.0652 (16)	0.0703 (16)	0.0761 (15)	0.0069 (13)	0.0236 (12)	0.0185 (13)
C5	0.0507 (14)	0.0808 (17)	0.0896 (17)	0.0049 (13)	0.0279 (13)	0.0079 (14)
C4	0.0561 (14)	0.0657 (15)	0.0713 (14)	0.0005 (12)	0.0253 (12)	0.0058 (11)
C9	0.0768 (19)	0.0812 (18)	0.0902 (17)	-0.0015 (15)	0.0400 (15)	0.0249 (15)
C10	0.076 (5)	0.078 (5)	0.114 (6)	-0.001 (4)	0.038 (4)	0.024 (4)
C11	0.133 (7)	0.100 (6)	0.095 (5)	0.017 (5)	0.030 (5)	-0.005 (4)
C12	0.169 (13)	0.141 (15)	0.241 (18)	0.001 (10)	0.074 (11)	0.012 (11)
C10'	0.090 (8)	0.101 (7)	0.119 (9)	0.004 (6)	0.044 (7)	0.031 (6)
C11'	0.106 (7)	0.108 (6)	0.106 (7)	0.001 (5)	0.045 (5)	0.007 (5)
C12'	0.174 (15)	0.098 (10)	0.098 (7)	-0.067 (9)	0.037 (8)	-0.033 (7)

Geometric parameters (Å, °)

N1—C1	1.360 (3)	С9—Н9С	0.9700
N1—C8	1.397 (3)	C9—H9D	0.9701
N1—C9	1.463 (3)	C10-C11	1.492 (8)
C3—C4	1.389 (3)	C10—H10A	0.9700
C3—C8	1.406 (3)	C10—H10B	0.9700

C3—C2	1.476 (3)	C11—C12	1.549 (9)
C2—C2 ⁱ	1.369 (4)	C11—H11A	0.9700
C2—C1	1.519 (3)	C11—H11B	0.9700
C8—C7	1.377 (3)	C12—H12A	0.9600
O1—C1	1.214 (2)	C12—H12B	0.9600
C6—C5	1.364 (3)	C12—H12C	0.9600
C6—C7	1.380 (3)	C10'—C11'	1.486 (9)
С6—Н6	0.9300	C10'—H10C	0.9700
С7—Н7	0.9300	C10'—H10D	0.9700
C5—C4	1.382 (3)	C11'—C12'	1.556 (9)
С5—Н5	0.9300	C11'—H11C	0.9700
С4—Н4	0.9300	C11'—H11D	0.9700
C9—C10'	1.500 (12)	C12'—H12D	0.9600
C9—C10	1.511 (9)	C12'—H12E	0.9600
С9—Н9А	0.9700	C12'—H12F	0.9600
С9—Н9В	0.9700		
C1—N1—C8	110.78 (17)	N1—C9—H9D	109.1
C1—N1—C9	123.35 (18)	C10'—C9—H9D	109.5
C8—N1—C9	125.83 (19)	С10—С9—Н9D	80.8
C4—C3—C8	116.91 (19)	H9A—C9—H9D	132.2
C4—C3—C2	135.73 (19)	H9C—C9—H9D	107.4
C8—C3—C2	107.34 (17)	C11—C10—C9	112.5 (7)
$C2^{i}$ — $C2$ — $C3$	133.3 (2)	C11—C10—H10A	109.1
C2 ⁱ —C2—C1	122.6 (2)	С9—С10—Н10А	109.1
C3—C2—C1	104.10 (17)	C11—C10—H10B	109.1
C7—C8—N1	126.8 (2)	С9—С10—Н10В	109.1
C7—C8—C3	123.1 (2)	H10A—C10—H10B	107.8
N1—C8—C3	110.06 (18)	C10-C11-C12	110.9 (11)
O1-C1-N1	122.95 (19)	C10-C11-H11A	109.5
O1—C1—C2	129.3 (2)	C12—C11—H11A	109.5
N1—C1—C2	107.71 (18)	C10-C11-H11B	109.5
C5—C6—C7	120.6 (2)	С12—С11—Н11В	109.5
С5—С6—Н6	119.7	H11A—C11—H11B	108.1
С7—С6—Н6	119.7	C11'—C10'—C9	112.2 (9)
C8—C7—C6	117.8 (2)	C11'-C10'-H10C	109.2
С8—С7—Н7	121.1	C9—C10'—H10C	109.2
С6—С7—Н7	121.1	C11'—C10'—H10D	109.2
C6—C5—C4	121.4 (2)	C9—C10'—H10D	109.2
С6—С5—Н5	119.3	H10C—C10'—H10D	107.9
C4—C5—H5	119.3	C10'-C11'-C12'	109.9 (11)
C5—C4—C3	120.1 (2)	C10'—C11'—H11C	109.7
С5—С4—Н4	120.0	C12'—C11'—H11C	109.7
C3—C4—H4	120.0	C10'—C11'—H11D	109.7
N1—C9—C10'	114.8 (4)	C12'—C11'—H11D	109.7
N1—C9—C10	114.3 (3)	H11C—C11'—H11D	108.2
N1—C9—H9A	108.7	C11'—C12'—H12D	109.5
С10—С9—Н9А	108.7	C11'—C12'—H12E	109.5
N1—C9—H9B	108.7	H12D-C12'-H12E	109.5

supplementary materials

С10—С9—Н9В	108.7	C11'—C12'—H12F	109.5
Н9А—С9—Н9В	107.6	H12D—C12'—H12F	109.5
N1—C9—H9C	107.1	H12E—C12'—H12F	109.5
С10'—С9—Н9С	108.7		
C4—C3—C2—C2 ⁱ	2.3 (5)	C3—C2—C1—N1	-1.0 (2)
C8—C3—C2—C2 ⁱ	-178.7 (3)	N1—C8—C7—C6	-178.2 (2)
C4—C3—C2—C1	-178.0 (2)	C3—C8—C7—C6	1.4 (4)
C8—C3—C2—C1	0.9 (2)	C5—C6—C7—C8	-0.9 (4)
C1—N1—C8—C7	179.5 (2)	C7—C6—C5—C4	0.1 (4)
C9—N1—C8—C7	1.7 (4)	C6—C5—C4—C3	0.3 (3)
C1—N1—C8—C3	-0.1 (2)	C8—C3—C4—C5	0.2 (3)
C9—N1—C8—C3	-177.9 (2)	C2—C3—C4—C5	179.0 (2)
C4—C3—C8—C7	-1.0 (3)	C1—N1—C9—C10'	73.5 (5)
C2—C3—C8—C7	179.8 (2)	C8—N1—C9—C10'	-108.9 (5)
C4—C3—C8—N1	178.60 (18)	C1—N1—C9—C10	108.4 (4)
C2-C3-C8-N1	-0.6 (2)	C8—N1—C9—C10	-74.0 (4)
C8—N1—C1—O1	-179.6 (2)	N1-C9-C10-C11	-71.8 (8)
C9—N1—C1—O1	-1.7 (4)	C10'-C9-C10-C11	26.5 (8)
C8—N1—C1—C2	0.7 (2)	C9-C10-C11-C12	-175.1 (12)
C9—N1—C1—C2	178.54 (19)	N1-C9-C10'-C11'	62.3 (10)
C2 ⁱ —C2—C1—O1	-1.0 (4)	C10—C9—C10'—C11'	-34.3 (7)
C3—C2—C1—O1	179.3 (2)	C9—C10'—C11'—C12'	178.9 (10)
$C2^{i}$ — $C2$ — $C1$ — $N1$	178.7 (2)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.			

Fig. 1

